Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Biotechnol ; 16(2): 173-176, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36542752

RESUMO

This paper presents the scientific breakthroughs made in bioprocess engineering and microbial biotechnology for the conversion of wastes into products with added value and/or biofuels. The significant results obtained in the emerging fields of hybrid electrosynthesis, the role of enzymes in the degradation of plastics, polyhydroxyalkanoate and 5-aminolevulinic acid production, fermentation technology and the application of molecular engineering tools to bioprocess technology are highlighted.


Assuntos
Biotecnologia , Poli-Hidroxialcanoatos , Biotecnologia/métodos , Fermentação , Biocombustíveis
2.
Environ Res ; 216(Pt 2): 114525, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243055

RESUMO

1-butyl-3-methylimidazolium bis(triflouromethylsufonyl)imide functionalization to Na-X zeolite (IFZ) is the primary goal of this study in order to evaluate its ability to remove heavy metals (Cd2+), (Zn2+), dyes Rhodamine 6G (R6), and Alizarin Red S (AR) from aqueous streams. IFZ was thoroughly examined using analytical techniques XRD, BET, FE-SEM, and FTIR, to better understand its physical and chemical properties. The surface area and the volume of pores (IFZ; 19.93 m2/g, 0.0544 cm3/g) were reduced in comparison to the parent zeolite (Na-X; 63.92 m2/g, 0.0884 cm3/g). According to SEM, the crystal structure of the zeolite (Na-X) has not been significantly altered by XRD analysis. The mechanism, kinetics, isotherms, and thermodynamic properties of adsorption were all studied using batch adsorption experiments under various operating conditions. IFZ adsorbs dyes (AR; 76.33 mg/g, R6; 65.85 mg/g) better than metal ions (Cd2+; 30.68 mg/g, Zn2+; 41.53 mg/g) in acidic conditions. The Langmuir isotherm and pseudo-second order models were found to be the most accurate models for equilibrium data. Adsorption is endothermic and spontaneous, as revealed by the thermodynamics of the process. The IFZ can be used in three (Cd2+), two (Zn2+), four (AR), and five (R6) cycles of desorption and regeneration. For these reasons, IL-modified zeolite can be used to remove multiple types of pollutants from water in one simple step.


Assuntos
Líquidos Iônicos , Poluentes Químicos da Água , Zeolitas , Zeolitas/química , Adsorção , Cádmio/análise , Corantes/análise , Poluentes Químicos da Água/análise , Íons , Cinética , Termodinâmica , Água/química , Zinco/análise , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...